Members‎ > ‎

Antoni Tekiel

From 2008 to 2013 Antoni was a PhD student in Peter Grutter's research group.

He joined McGill University after completing his degree at the Jagiellonian University in Krakow, where he worked in the group of Professor Marek Szymonski on surface science of titanium dioxide. Prior to coming to McGill he was also an exchange student at the University of Heidelberg, where he gained experience on self-assembled monolayers (SAMs) in the group of Michael Zharnikov, and a summer student at HASYLAB (DESY) in Hamburg, where he worked with Stephan V. Roth on small-angle X-ray scattering.

Antoni defended his PhD thesis entitled "Ultra-high vacuum fabrication of nanoscale systems for studying single-electron charging by room-temperature atomic force microscopy" on June 7, 2013.

Journal Publications

  1. M. Feldmann, D. Dietzel, A. Tekiel, J. Topple, P. Grutter, and A. Schirmeisen
    Universal ageing mechanism for static and sliding friction of metallic nanoparticles
    Phys. Rev. Lett. 117, 025502 (2016)


  2. A. Tekiel, Y. Miyahara, J. M. Topple, and P. Grütter
    Room-Temperature Single-Electron Charging Detected by Electrostatic Force Microscopy
    ACS Nano 7, 4683–4690 (2013)

  3. A. Tekiel, S. Fostner, J. M. Topple, Y. Miyahara, and P. Grütter
    Reactive growth of MgO overlayers on Fe(001) surfaces studied by low-energy electron diffraction and atomic force microscopy
    Appl. Surf. Sci. 273, 247-252 (2013)


  4. A. Tekiel, J. M. Topple, Y. Miyahara, and P. Grütter
    Layer-by-layer growth of sodium chloride overlayers on the Fe(001)-p(1x1)O surface
    Nanotechnology 23, 505602 (2012)

  5. S. Godlewski, A. Tekiel, W. Piskorz, F. Zasada, J. S. Prauzner-Bechcicki, Z. Sojka,
    and M. Szymonski
    Supramolecular Ordering of PTCDA Molecules: The Key Role of Dispersion Forces in an Unusual Transition from Physisorbed into Chemisorbed State
    ACS Nano 6, 8536–8545 (2012)


  6. S. Fostner, A. Tekiel, J. M. Topple, Y. Miyahara, and P. Grütter
    Field deposition from metallic tips onto insulating substrate
    Nanotechnology 22, 465301 (2011)

  7. S. Godlewski, A. Tekiel, J. S. Prauzner-Bechcicki, J. Budzioch, A. Gourdon, and M. Szymonski
    Adsorption of organic molecules on the TiO2(011) surface: STM study
    J. Chem. Phys. 134, 224701 (2011)

  8. J. M. Topple, S. A. Burke, W. Ji, S. Fostner, A. Tekiel, and P. Grutter
    Tailoring the Morphology and Dewetting of an Organic Thin Film
    J. Phys. Chem. C 115, 217-224 (2011)

  9. F. Zasada, W. Piskorz, S. Godlewski, J. S. Prauzner-Bechcicki, A. Tekiel, J. Budzioch, P. Cyganik, M. Szymonski, and Z. Sojka
    Chemical Functionalization of the TiO2(110)-(1×1) Surface by Deposition of Terephthalic Acid Molecules. A Density Functional Theory and Scanning Tunneling Microscopy Study
    J. Phys. Chem. C 115, 4134-4144 (2011)


  10. S. Godlewski, A. Tekiel, J. S. Prauzner-Bechcicki, J. Budzioch, and M. Szymonski
    Controlled reorientation of CuPc molecules in ordered structures assembled on the TiO2(011)-(2×1) surface
    Chemphyschem 11, 1863-6 (2010)


  11. S. Godlewski, A. Tekiel, J. Budzioch, A. Gourdon, J. S. Prauzner-Bechcicki, and M. Szymonski
    Adsorption of large organic molecules on clean and hydroxylated rutile TiO2(110) surfaces
    Chemphyschem 10, 3278-84 (2009)

  12. J. S. Prauzner-Bechcicki, S. Godlewski, A. Tekiel, P. Cyganik, J. Budzioch and M. Szymonski
    High-resolution STM studies of terephthalic acid molecules on rutile TiO2(110)-(1×1) surfaces
    J. Phys. Chem. C 113, 9309-9315 (2009)


  13. A. Tekiel, S. Godlewski, J. Budzioch and M. Szymonski
    Nanofabrication of PTCDA molecular chains on rutile TiO2(011)-(2×1) surfaces
    19, 495304 (2008)

  14. A. Tekiel, J.S. Prauzner-Bechcicki, S. Godlewski, J. Budzioch and M. Szymonski
    Self-assembly of terephthalic acid on rutile TiO2(110): Toward chemically functionalized metal oxides surfaces
    J. Phys. Chem. C 112, 12606-12609 (2008)


  15. A. Tekiel, M. Goryl and M. Szymonski
    Copper phthalocyanine molecules on an InSb(001) c(8×2) surface studied by ultra-high-vacuum STM and non-contact AFM
    Nanotechnology 18, 475707 (2007)